A Systematic Review of Virulence Factors in the Leishmania Genus **Osaru Omoruna,**¹ Avinash N. Mukkala,² Ruwandi Kariyawasam,² Eric Shao,³ Priyanka Challa,⁴ Michael Klowak,² Tianna Chong-Kit,⁵ Olamide Egbewumi,⁴ Shareese Clarke,⁶ Dylan Kain,⁷ Jamie Sookhoo⁸, Andrea K. Boggild^{2,7,8,9}

¹Department of Biomedical and Molecular Science, Queen's University, Kingston, ON, Canada; ²Institute of Medical Science, University, Kingston, ON, Canada; ³Department of Microbiology and Immunology, University of Western Ontario, London; ⁴Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada; ⁵Department of Biochemistry, University of Ontario Institute of Technology, Oshawa, ON, Canada; ⁷Department of Medicine, University of Toronto, Toronto, ON, Canada; ¹Department of Medicine, University of Toronto, ON, Canada; ¹Department of Medicine, Universi ⁸Tropical Disease Unit, UHN-Toronto General Hospital, Toronto, ON, Canada; ⁹Public Health Ontario Laboratories, Toronto, ON, Canada.

•Leishmaniasis is a neglected tropical disease divided into three major classifications based on clinical presentation: cutaneous (CL), mucocutaneous (MCL) and visceral (VL) •Transmitted by the *Lutzomyia* spp. and *Phlebotomus* spp. sandflies, there are up to 2 million cases of Leishmaniasis globally while 350 million people are at risk •Parasite-determined factors play a complementary role in the pathogenesis of leishmaniasis •Virulence factors (VFs), or pathogen moieties facilitating disease, can potentiate host cell damage by *Leishmania* spp. by increased expression, host cell invasion, stress tolerance, and modulation of the host immune system •Due to large eukaryotic genomes in *Leishmania* spp., there is a wide array of VFs which contribute to different aspects of pathogenesis; we aim to synthesize this knowledge by systematically mapping the literature

TORONTO

 Some common parasite-derived pathogenesis mechanisms in *Leishmania* include: Heat shock adaptation to the host environment

	 stabilization of proteins in stressful host environments Significant expression changes in HSPs as parasite is engulfed in host cells Aid in adapting from poikilothermic insect vector to a homeothermic mammalian host 	
HSP70		
HSP83		
HSP90		
HSP100		
HSP65		
LPG	 Lipophosphoglycan Cell surface anchored molecule Species-specific sugar component 	

• Required to cause infection in the sandfly hindgut

- Evading the immune system
- Increased expression of survival factors
- Preventing innate immunity opsonisation
- Modulation of the host immune system
- Heat shock is mainly directed by heat shock proteins (HSPs):
 - Different HSPs are used preferentially in different species
- HSP23 can protect against thermal, acidic and oxidative stresses
- CyP40 is thought to be a co-chaperone that helps the parasite infect macrophages
- Loss of HSP100 renders L. major and L. donovani non-infective in vitro at physiological temperatures Heat shock and resulting thermotolerance is a crucial

METHODS

• PubMed (NCBI), MEDLINE (OVID), EMBASE (OVID), Web of Science, and LILACS (VHL) were searched from inception to July 2018 using combinations of the search terms "virulence factor*", "Leishmania", and "Leishmaniasis*", while accounting for unique database syntax

 Iterative inclusion and exclusion of search terms was employed to maximize relevant article extraction • Primarily, molecular and mechanistic pathogenesis studies in various model systems, observational studies, review studies, cohort studies, as well as

- Metalloprotease **GP63**
 - Cleaves C3b complement
 - Halts and hinders innate
 - immunity
 - Protects parasite from cell lysis
- CPB Lowered virulence in
 - macrophages
 - Lowered virulence in mice
 - Required to cause infection
- Elongation factor that is part EF-1alpha of the parasite exosome
 - Blocks Nitric Oxide
 - production
 - Promotes survival

• Exacerbate parasite-derived **A2** immunopathogenesis • Significant in visceral leishmaniasis

method by which *Leishmania* species exert their virulence

DISCUSSION

• The ability to comprehensively synthesize all the known literature around parasite-determined virulence factors can open new doors into networklevel pathogenesis

- Connecting the dots between virulence factors (if any) to construct a more complete picture of parasite pathogenesis can help better illuminate the underpinnings of different disease manifestations • Once all parasite-determined VFs are mapped, it can elucidate how they may tie into host-determined

clinical trials are included

• Synthesis is done by grouping of similar VFs in similar pathogenesis mechanisms, e.g. heat shock • 760 MEDLINE, 1942 PubMed, 1314 EMBASE, 438 Web of Science, and 8 LILACS records were retrieved for title and abstract screening; after a multi-step deduplication pipeline, 2620 remained • All records undergo double-reviewer screening, with tertiary arbitrators to mitigate any discrepancies

• Catalyze the interconversion MPI of F6P and M6P

- Required for glycoconjugates
- Loss of MPI leads to loss of
 - surface-anchored VF

synthesis, such as

leishmanolysin

immunopathogenesis mechanisms

- Being able to modulate some of these network-level systems can potentially identify novel targets for therapeutics and diagnostics
- This systematic review has implications for painting a more full picture of parasite-determined *Leishmania* pathogenesis and hence help tie the ends between different VFs, and maybe shed light into host environmental factors

Contact: Dr. Andrea K. Boggild | andrea.boggild@utoronto.ca |

