

Santé

publique

Public

lealth

Influence of Host on Nutriome on Immunological Control of **Protozoal Infections**

Emma Hagopian¹, Shveta Bhasker¹, Michael Klowak^{2,3}, Ruwandi Kariyawasam^{2,3}, David Harris¹, **Priyanka Challa¹**, Celine Lecce¹, Rachel Lau³, Andrea K. Boggild^{1,2,3,4}

¹Tropical Disease Unit, University Health Network, Toronto, ON, Canada, ²Institute of Medical Sciences, University of Toronto, Ontario, Canada, ³Public Health Ontario Laboratories, Public Health Ontario, Toronto, ON, Canada, ⁴Department of Medicine, University of Toronto, Toronto, Ontario, Canada

Vitamin C

Vitamin D

Vitamin B1

Introduction

- Immunologic control of parasitic infections is a combination of humoral and cellular immunity
- Inadequate nutritional status impairs the functioning of the immune system potentially resulting in increased susceptibility to protozoal infections
- Laboratory, epidemiological, and other observational studies provide convincing evidence that micronutrient deficiencies contribute to the mortality and morbidity of infectious diseases^{1,2}
- We aim to synthesize existing knowledge around the interrelationships between nutrients and immune function and demonstrate the ways in which nutrient deficiencies such as zinc, iron and vitamin A impact immune response and defence in patients with protozoal diseases such as Leishmaniasis and Chagas disease

Methods

PubMed, Embase, Medline, Scopus, and LILACS were searched from database inception to March 13, 2019 using combinations of the search terms (Leish* OR Trypanasom* OR Protozoa*) AND (Vitamin A Deficiency OR Iron Deficiency OR Anemia OR Zinc Deficiency OR Nutrient Deficienc* OR Nutritional Deficienc* OR Nutritionally compromised OR Micronutrient* OR Malnutrition OR Nutrition OR Nutritional Status) AND (Immunology OR Immunity OR Immune System OR Immune Function OR Immune Impairment OR Immune Response OR Immune Status)

Contact: Dr. Andrea K. Boggild; E-mail: andrea.boggild@utoronto.ca **@BoggildLab; Website:** <u>www.boggildlab.ca</u>

· Vitamin A supp

 Vitamin A defic greater producti

·Prophylactic ad

donovani in har

·Vitamin D bindi

· Deficiency doe

leishmaniasis in

leishmaniasis

donovani

Data Extraction

Data extraction will be performed by two reviewers and the quality of the articles will be critically evaluated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach

> ¹Taylor, C. E., & Higgs, E. S. (2000). Micronutrients and infectious diseases: Thoughts on integration of mechanistic approaches into micronutrient research. The Journal of Infectious Diseases, 182(Supplement 1), S1-S4. ²SanJoaguin, M. A., Molyneux, M. E. (2009). Malaria and vitamin A deficiency in African children: a vicious circle? Malaria Journal, 8(134)

Leishmania	Trypanosoma cruzi
with zinc sulfate reduces lesion size and denhances Th1 cytokine response in ulcers of	 Mononuclear phagocytes have reduced capacity to associate with and kill <i>T. cruzi</i> in setting of zinc deficiency
diets lead to greater visceralization of <i>L</i> .	
lelays development of cutaneous ulcers due to systemic iron leads to reduced parasite load hology iets lead to greater visceralization of <i>L</i> .	 Iron chelation decreases parasitemia and mortality in <i>T. cruzi infected</i> mice due to a trypanostatic effect
hin A are lower in children with visceral dementation promotes multiplication of <i>L.</i> ciency leads to Th2 to Th1 switching, and ion of Th1 cytokines	•Deficiency alters innate immunity by impairing normal regeneration of mucosal barriers damaged by <i>T. cruzi infection</i> , and by reducing the function of PMNs, macrophages, and NK cells
ministration of Vitamin C reduces uptake of <i>L.</i> Isters, thereby reducing parasite burden	 ·Vitamin C reduces parasitemia in <i>T. cruzi infected</i> mice compared to controls, but not compared to benznidazole · Combination vitamin C and benznidazole led to 100% survival and reduced acute-phase infection weight loss
ng protein is downregulated in visceral	 Inflammatory reaction and cellular and tissue parasitism by <i>T. cruzi</i> reduced in animals given higher doses of Vitamin D
s not alter clinical course of visceral mice	· Deficiency leads to higher parasitemia and larger cardiac lesions in <i>T. cruzi</i> infected rats

References