Influence of Host Nutriome on Immunological **Control of Leishmania Infection**

Ranie Ahmed¹, Michael Klowak¹, Mariyam Mohammed², Rachel Lau³, Afia Birago², Kalsoom Shahzad², Chelsia Watson¹, Andrea K. Boggild^{1,2,4*}

¹Institute of Medical Science, University of Toronto, Toronto, ON, Canada; ²Tropical Disease Unit, Toronto General Hospital, Toronto, ON, Canada; ³Public Health Ontario Laboratories, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada

*Contact: <u>andrea.boggild@utoronto.ca</u>; boggildlab.ca; **y**@BoggildLab

Introduction

- •Immunologic control of parasitic infections arises from a combination of humoral and cellular mechanisms, both of which may be influenced by host nutritional status
- •Micronutrient depletion or over-repletion may impair the functioning of the immune system, potentially resulting in increased susceptibility to and poor immunologic control of protozoal infections
- •Leishmaniasis is a tissue-dwelling parasitic infection in which disease severity is determined by the host's immune system along with parasitologic factors
- •Research suggests that acquired factors such as nutritional inadequacies play a significant role in immunosuppression & pathogenicity •We aim to synthesize the knowledge surrounding the interplay between host micronutrient status and the tissue-based protozoal infection leishmaniasis

Methods

Identification

Screening

Eligibility

Included

•Five electronic databases were searched with combinations of search terms such as Parasite* AND (Immunology OR

Immunity OR Immune System OR Immune Function OR Immune Impairment OR Immune Response OR Immune Status), from database inception to March 29, 2022

•Screening was performed independently by two reviewers with discrepancies arbitrated by a tertiary reviewer

•Following screening, a comprehensive bias assessment will be carried out using the Grading of Recommendations Assessment, Development, & Evaluation (GRADE) approach

Included	Excluded		
Systematic reviews	Review articles		
Randomized controlled trials	Case reports		
Clinical trials	Case series (n<4)		
Cohort studies	Editorials		
Observational studies	Conference proceedings		
Case-control studies	Animal studies		
Case series (n>5)	Trial descriptions only		

Table 1. Inclusion and exclusion criteria implemented during title and abstract
 screening

Figure 1. PRISMA Flowchart

Results

Author, Year	Country	Design	Population	Sample Size	Assessment / Intervention	Mean Age ± SD	Sex (F:M)	Outcomes
¹ Goyonlo, 2020	Iran	Case-Control	Diagnosis of CL confirmed by Geimsa-stained direct smear versus age and sex matched controls	220 Cases (149) Control (71)	Nutritional status and Vitamin A intake via FFQ	21.32 ± 17.62	Cases (82:67) Contoris (45:26)	Daily intake of Vitamin A (p<0.001) was significantly lower among the CL group, as well as energy intake, fiber, Vitamin E, and potassium
² Guzman-Rivero, 2014	Bolivia	Case-Control	Patients aged 15-50 with confirmed CL on blood, or microbiological/biochemical analysis.	29 Cases (14) Controls (15)	Zinc gluconate (315mg) vs placebo (315mg cornstarch) for 60 days	Not Reported	Not Reported	A statistically significant biological or clinical effect due to zinc was not found
³ Maciel, 2014	Brazil	Case-Control	Children with clinical and laboratory confirmed VL versus healthy controls	26 Cases (10) Controls (16)	Serum vitamin A (retinol) status and immune response (CD4+CD24Foxp3+ T cells)	Cases (7.99 ± 7.85) Controls (8.82 ± 6.26)	Cases (7:3) Contorls (5:11)	Vitamin A (retinol) status (p=0.013) and immune cells (p=0.011) were significantly lower in cases versus controls
⁴ Maciel, 2008	Brazil	Case-Control	Biochemically confirmed cases of paediatric VL versus healthy controls	149 Cases: Active VL (20) History of VL (33) Antigen Response to VL (40) Controls (56)	Nutritional status via anthropometry, and serum Vitamin A (retinol) level	Cases: Active VL (4.7 ± 3.9) History of VL (10.1 ± 3.3) Antigen Response to VL (11.2 ± 2.4) Controls (8.1 ± 3.4)	Cases: Active VL (11:9) History of VL 19(:14) Antigen Response to VL (20:20) Controls (31:25)	Serum retinol was significantly lower in patients with active VL versus controls (p=0.037)
^S Cerf, 1987	Brazil	Case-Control	Children aged 0-15 years old with at least 2 consecutive years of anthropometric and serologic data confirming presence of VL	1066	Nutritional status via weight-for-age index	Not Reported	Not Reported	Low weight-for-age was significantly higher In VL children versus controls (p < 0.0001)
⁶ Kumar, 2014	India	Case-Control	Patients with confirmed, active, and untreated cases of VL versus healthy controls	40 Cases (20) Controls (20)	Nutrition status via weight-to-height ratios and immune response (including ROS activity, cytokine levels, leishmania antigen) via biochemistry	Not Reported	Not Reported	Patients found to be malnourished had a statistically significant weakened immune response to VL on several accounts as compared to healthy controls: antigen responsiveness, monocytes, & ROS activity (p<0.05), CD62-L (p<0.001)
⁷ Kocyigit, 2002	Turkey	Case-Control	Patients with laboratory confirmed CL versus healthy controls	50 Cases (28) Controls (22)	Serum nutrient levels: copper, zinc, and iron, and immunoregulatory cytokines: IL-1B, IL-2R, IL-6, IL-8, TNF-a	Cases (27.3 ± 3.8) Controls (28.4 ± 4.1)	Not Reported	Plasma selenium, zinc, iron, and IL-2r levels were significantly lower and plasma copper, IL-1B, IL-8, IL-6, and TNF-a were significantly higher in cases versus controls (p<0.01)
⁸ Al-Jurayyan, 1995	Saudi Arabia	Cohort Study	Infants and children undergoing active treatment for Leishmania donovani	94	Haematological findings including nutrition via biochemistry	1.8	39:55	Patients with active infection were found to be immunocompromised and iron deficient
⁹ Carbone, 2018	Brazil	Clinical Trial	Patients with parasitologically confirmed presence of VL	67 Intervention: With Zinc (33) Without Zinc (29) Controls (15)	Zinc (2mg/kg/day) plus standard treatment (amphotericin B (0.5-1mg/kg/day) or glucantime (20mg/kg/day)) for 20 days versus standard alone	Intervention: With Zinc (46.20 ± 9.66) Without Zinc (43.76 ± 6.50) Controls (44.60 ± 10.20)	Intervention: With Zinc (12:11) Without Zinc (18:11) Controls (9:6)	Patients who received Zinc supplementation exhibited a more rapid reduction in spleen size compared to controls (p<0.05)
¹⁰ Mengesha, 2014	Ethiopia	Cross- Sectional	Patients age >17 years and non pregnant women with a confirmed diagnosis of VL	403	Nutritional status via BMI	Only Range Provided: 68% 18-27 years old 25.8% 28-37 years old 6.2% >37 years old	6:397	The prevalance of malnutrition and VL infection was 95.5% while presence of intestinal parasitic infection was statistically associated with severe malnutrition in VL patients (p<0.001)

Table 2. Preliminary Data Extraction of Included Studies

Abbreviations: Cutaneous Leishmaniasis (CL), Visceral Leishmaniasis (VL), Food Frequency Questionnaire (FFQ), Reactive Oxygen Species (ROS), Body Mass Index (BMI), Interleukin (IL), Tumor Necrosis Factor (TNF)

Discussion

- •Following full-text screening 10 articles remained for absolute inclusion
- •Deficiencies reported thus far include malnourishment in general, vitamin A, zinc (n=3 each), iron (n=2), fiber, vitamin E, potassium, selenium, and copper (n=1 each), which variably intersected with clinical disease manifestations and progression
- •Disruptions to immune cell count (n=3), and antibody levels (n=1) were also noted
- •The data will be summarized to systematically map published literature that will illuminate a number of ways in which nutrient deficiencies or abnormal micronutrient status alter and impair immune function in persons with leishmaniasis
- •This synthesized body of information will ultimately inform adjunctive therapeutic decisions in the context of leishmaniasis, which has the potential to improve patient prognosis

References