Influence of Host Nutriome on Immunological Control of *Trypanosoma cruzi* Infection

Michael Klowak¹, Ranie Ahmed¹, Mariyam Mohammed², Rachel Lau³, Afia Birago², Kalsoom Shahzad², Chelsia Watson¹, Andrea K. Boggild^{1,2,4*}

¹Institute of Medical Science, University of Toronto, Toronto, ON, Canada; ²Tropical Disease Unit, Toronto General Hospital, Toronto, ON, Canada; ³Public Health Ontario Laboratories, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada

*Contact: <u>andrea.boggild@utoronto.ca</u>; boggildlab.ca; **>>** @BoggildLab

Introduction

•Host nutritional status may impact humoral & cellular mechanisms, modulating the immunologic control of parasitic infections

Insufficient or surplus micronutrients can weaken the immune systems' function, resulting in poor immunologic control of protozoal infections
Chagas disease, caused by *Trypanosoma cruzi*, is heavily influenced by the host's immune system, which can be modulated by the host's nutritional status

•To further understand this, we intend to study the relationship between tissue-based protozoal infections & host micronutrient status

Methods

-

Identification

Screening

Eligibility

Included

•Combinations of search terms such as Parasite* AND (Immunology OR Immunity OR Immune System OR Immune Function OR Immune Impairment OR Immune Response OR Immune Status) from database inception to March 29, 2022 were searched in five electronic databases

•Screening was performed independently by two reviewers with discrepancies arbitrated by a tertiary reviewer

Included	Excluded		
Systematic reviews	Review articles		
Randomized controlled trials	Case reports		
Clinical trials	Case series (n<4)		
Cohort studies	Editorials		
Observational studies	Conference proceedings		
Case-control studies	Animal studies		
Case series (n>5)	Trial descriptions only		

Table 1. Inclusion and exclusion criteria implemented during title and abstract screening

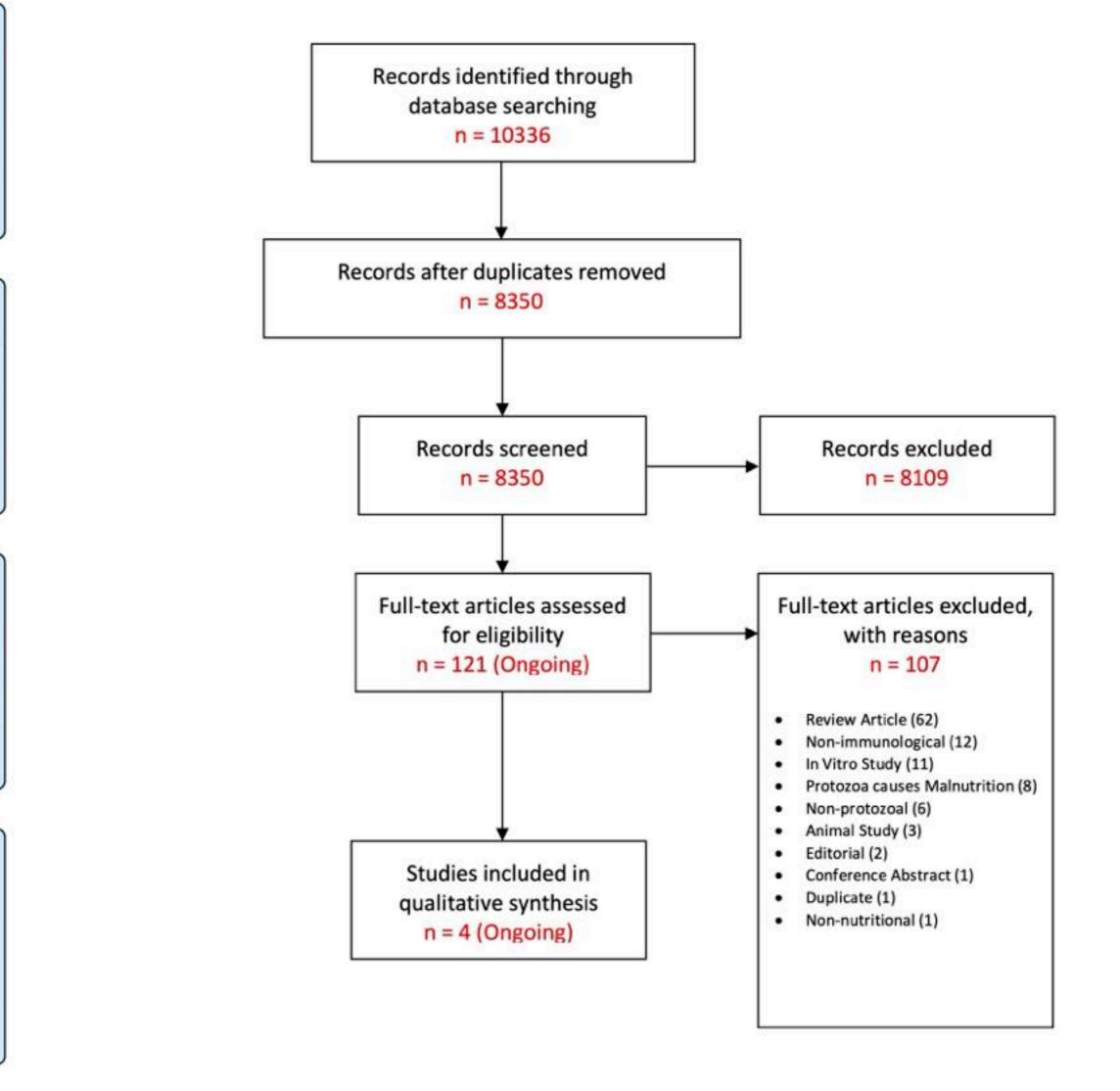


Figure 1. PRISMA Flowchart

Results

Author, Year	Country	Design	Population	Sample Size	Assessment / Intervention	Mean Age ± SD	Sex (F:M)	Outcomes
¹ Junior, 2019	Brazil	Observational Cohort	Overweight adult males with cardiac and indeterminate forms of Chagas Disease	64 Indeterminate (46) Cardiac (18)	Serum vitamin D (via 25(OH)D3), and cathelicidin LL-37	Indeterminate (60) Cardiac (62)	0:46	Patients with the cardiac form had lower levels of serum 25(OH)D3 (p=0.03), however cathelicidin was similar between groups.
² Castilhos, 2017	Brazil	Case-Control	Age, sex, & co- morbidity matched Chagas cases and healthy controls	162 Cases (81) Controls (81)	Nutritional status via food frequency questionnaire and diet quality via the BHEI-R	Cases (63 ± 13.5) Controls (66 ± 10.7)	102:60	Chagas group had a lower intake of energy, vitamins A, D, and E, magnesium, and selenium, and a higher intake of lipids consistent with an inflammatory diet (p<0.0001 - p=0.0060). No statistically significant difference in BHEI- R.
³ da Silva, 2017	Brazil	Randomized Control Trial	Patients > 18 years old previously diagnosed with chronic Chagas cardiomyopathy versus healthy controls	40	Omega-3 PUFAs at a dose of 3 g/day or a placebo (corn oil) for 8 weeks	1 Intervention (58.6 + 11)	23:19	The omega-3 PUFAs group demonstrated greater improvements in serum triglycerides (-21.1 vs4.1; p = 0.05) and IL-10 levels (-10.6 vs35.7; p = 0.01)
				170 Cases Rio de Janeiro (122) Belo Horizonte (48)	Serum selenium, glutathione peroxidase activity, and thyroid-stimulating hormone	Cases: Rio de Janeiro (49 ± 12) Belo Horizonte (43 ± 10)	Cases: Rio de Janeiro (65:67) Belo Horizonte (17:31)	Selenium concentration was significantly lower in chronic disease patients than in

⁴ Rivera 2002	Brazil	Case-Control		32 Controls Rio de Janeiro (16) Belo Horizonte (16)	cardiomyopathy	Controls: Rio de Janeiro (33 ± 8) Belo Horizonte (39 ± 12)	Controls: Rio de Janeiro (7:9)	healthy adults on all accounts (65 ng/mL versus 72 ng/ mL; P< 0.01).
--------------------------	--------	--------------	--	---	----------------	--	-----------------------------------	--

Table 2. Preliminary Data Extraction of Included Studies

Abbreviations: Brazilian Healthy Eating Index-Revised (BHEI-R), Poly-Unsaturated Fatty Acids (PUFA), Interleukin (IL-10)

Discussion

- •Following full-text screening 4 articles remained for inclusion
- •Deficiencies reported thus far include vitamin D (n=2), selenium (n=2), vitamin A (n=1), vitamin E (n=1), magnesium (n=1), and omega-3 polyunsaturated fatty acids (n=1), which intersected with host clinical course and Chagas progression variably
- •The data collected will be concisely reported to illustrate the findings of published literature regarding the various ways that the function of the immune system in people with Chagas disease alters & deteriorates due to nutrient deficiencies or irregular micronutrient status
- •This combined body of information will potentially improve the prognosis of patients with Chagas disease, by informing about possible adjunctive therapies

References