UHN Canada's Hospital

Culling all adventure travelers! Marine envenomation

following lionfish culling in Curacao

Institute of Medical Science

Gregory D. Hawley^{1,2,3}, Chu Sandy Wang^{3,4}, Andrea K. Boggild^{1,2,3*}

¹Department of Medicine, University of Toronto, Toronto, Toronto, Ontario, Canada; ²Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; ³Tropical Disease Unit, Division of Infectious Diseases, UHN - Toronto General Hospital, Toronto, Ontario, Canada. ⁴Scarborough Health Network, Toronto, Ontario, Canada. *Corresponding author: andrea.boggild@utoronto.ca

Introduction

- Lionfish, family *Scorpaenidae*, are venomous fish native to Indo-Pacific waters
- Invasive species in the Atlantic Ocean^{1,2}
- Lionfish venom includes a heat-labile protein toxin
- Lionfish culling is a method to control invasive populations²
- Divers participating in culling are at high risk of injury and envenomation

Case Description

50-year-old healthy female traveled to Curacao for a scuba diving trip to cull lionfish

Puncture injury from lionfish spine to pad of right third finger (Figure 1)

Exposure

Day 0

- Removal of spine
- Warm water immersion (1A)
- Blistering of dorsal pad of fingertip and edema to entire finger (1B/1C)

Day 1-2 Progressive edema & pain to digit (1D/1E)

Day 2

- Seen at local clinic in Curacao
- Blister opened (1F/1G)
- Azithromycin prophylaxis

Further dives in Leeward Antilles Returns to Canada

~2-3 weeks: Evaluation in Tropical Disease Unit

- Persistent edema and pain with pressure
- O/e: 2mm scab on dorsal aspect of fingertip pad, mild edema
- No secondary infection, retained foreign body, or complications from venom (congestion, necrosis, ischemia)

Impression

Local envenomation +/- thermal injury

2 months: Clinical Outcome

- Complete resolution of erythema, edema, and bruising (Figure 2)
- Residual altered sensation with typing (pressure)

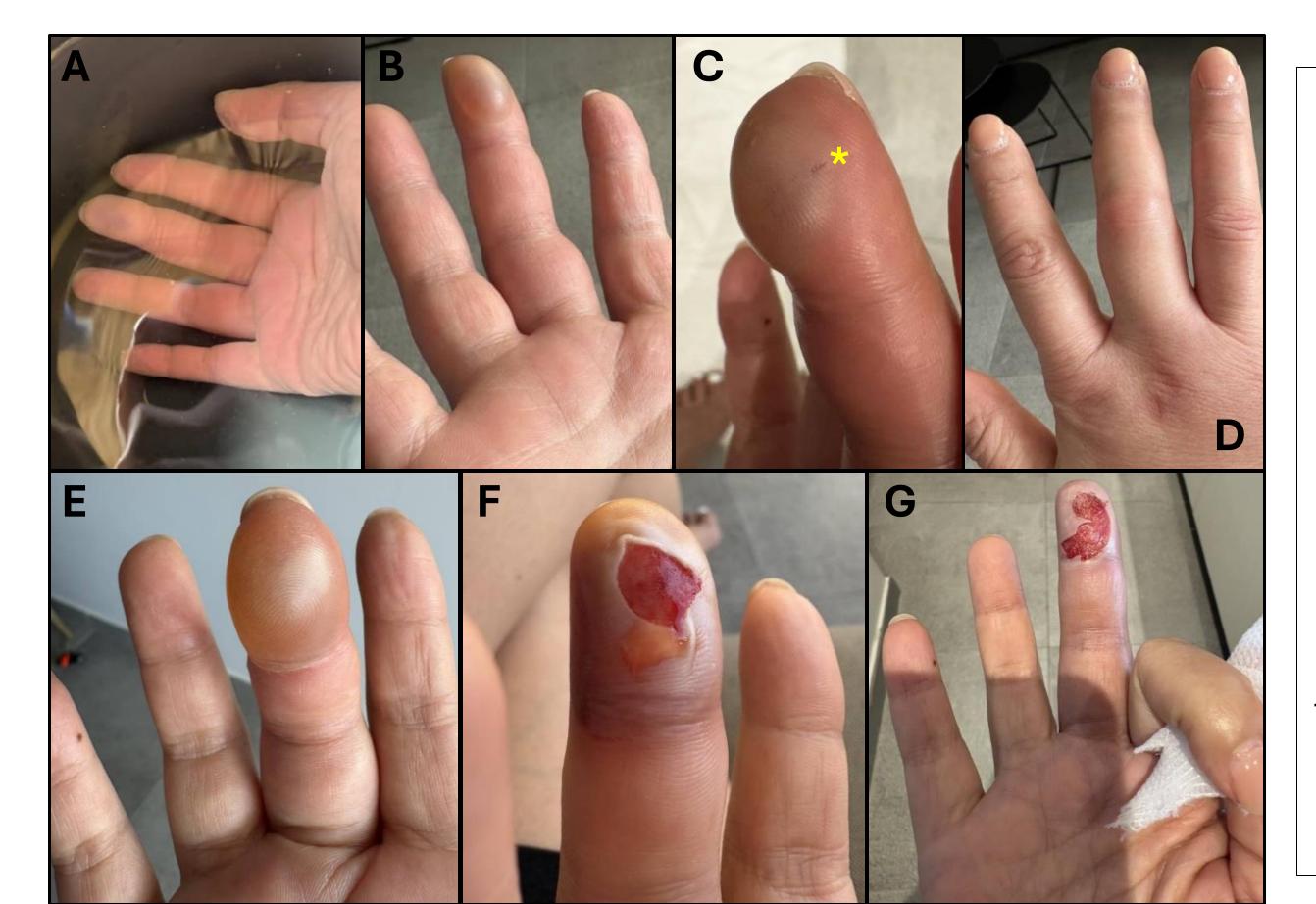


Figure 1: Lionfish sting wound following spine puncture injury.1A: warm water bath

immersion following initial sting injury.

1B and 1C: blister formation

on day of puncture injury.* Visible puncture wound.1D: diffuse edema to the entire third digit on day of puncture injury.

1E: blister formation on day two following puncture injury.1F and 1G: open wound two days after blister excision in Curacao.

Figure 2: Progressive healing of the lionfish sting, with resolution of erythema and ecchymosis. Final image (far right) was taken on twomonth assessment in our Tropical Disease Unit outpatient clinic.

Lionfish Marine Envenomation

- Increasing and underreported source of marine envenomation
- Common local manifestations include pain, edema, erythema; necrosis and ischemia are infrequent complications^{3,4}
- Systemic toxicity is rare^{3,4}
- Initial therapy should include warm water immersion (45°C for 30-90 min.)^{4,5}
- Other management considerations include wound care, tetanus prophylaxis, assessment of secondary bacterial infections, and supportive care^{4,5}

Environmental Health Implications

- Invasive species can have devastating consequences to local marine ecosystems
- Climate change and rising sea temperatures increase the range of invasive marine species^{2,6}
- Overfishing places additional stressors on native marine species¹
- Ecological changes increase the potential for human contact with venomous marine species⁶
- Pre-travel preparations should include marine envenomation precautions
- Post-travel providers should be aware of local and delayed complications

References

- 1. Albins MA and Hixon MA. Worst case scenario: potential long-term effects of invasive predatory lionfish (Pterois volitans) on Atlantic and Caribbean coral-reef communities. *Environ Biol Fish*. 2013;96:1151-7.
- 2. Frazer TK, et al. Coping with the lionfish invasion: Can targeted removals yield beneficial effects? Reviews in Fisheries Science. 2012;20(4):185-191.
- Auerbach PS. Marine envenomations. N Engl J Med. 1991;325(7):486–93.
 Diaz JH. Marine Scorpaenidae envenomation. J Travel Med. 2015;22(4):251–8.
- 5. Clark RF, et al. Stingray envenomation: a retrospective review of clinical presentation and treatment in 119 cases. *J Emerg Med*. 2007;33(1):33–7.
- 6. Côté IM, Green SJ, Morris JA Jr, Akins JL, Steinke D. Invasive lionfish: a major marine predator. *Biol Conserv.* 2013;160:50–9.