

A Case of Recurrent Phytophotodermatitis in a Traveler to the Caribbean

Chikaodili Obetta MD¹, Alexandra Finstad MD², Muskaan Sachdeva MD², Nikki Nathanielsz MD², and Andrea K. Boggild BSc, MSc, MD, DTMH, FRCPC³

1. Department of Family University of Toronto 2. Division of Dermatology, Department of Medicine, University of Toronto 3. Division of Infectious Diseases, Department of Medicine, University Health Network, Toronto, ON, Canada.

Introduction

- Phytophotodermatitis is a non-immunologic phototoxic reaction
- Caused by skin contact with photosensitizing plant compounds followed by exposure to ultraviolet (UV-A) light
- Classic presentation can range from welldemarcated erythematous linear streaks to illdefined erythema, vesicles
- It is often triggered by lime or citrus exposure, and is increasingly recognized among travelers to tropical regions

Case Timeline

Initial Trip

- Within 1 week of arrival → itchy red papule appears on right ulnar wrist
- Lesion spreads linearly down forearm
- Treated with albendazole at local clinic
- Rash resolves in ~5 days within return

Third Trip

Trip 3 – Barbados

- Recurrence with identical pattern and timing
- Again treated empirically for "beach worm" with
- albendazole at local clinic Rash resolved after return

Follow-Up

- Advised sun protection and to avoid lime juice
- on skin in future Complete resolution and no recurrence after preventive measures

Second Trip

- Recurrence with identical pattern and timing
- Again treated empirically for "beach worm" with
- albendazole at local clinic Rash resolved after return

Tropical Disease Clinic

- Presents to Tropical Disease clinic
- Detailed history and physical
- Photos show linear erythema on right forearm
- Diagnosed as recurrent phytophotodermatitis due to lime exposure

Learning Points

Epidemiology

- Phytophotodermatitis is a *non-immunologic* phototoxic skin reaction caused by contact with furocoumarins followed by UV-A exposure.
- parsley, celery and carrots
- More common in travelers to tropical and subtropical regions, where citrus and UV-A exposure are frequent.

- Furocoumarin is present in limes, figs,

Clinical Features & Diagnosis

- Presentation: Linear or irregular erythematous streaks, occasionally with vesicles, bullae, or postinflammatory hyperpigmentation on sun-exposed areas.
- Symptoms: Itching, burning, or tenderness, typically appearing 24–72 hours post-exposure.
- Diagnostic clue: History of food/drink exposure (particularly lime or citrus exposure)
- Differential diagnoses: contact dermatitis, blister beetle dermatitis, chemical burns, cutaneous larva migrans, or herpes simplex.
- Diagnosis is clinical

Treatment

- Usually self-limiting, resolving within days to weeks.
- Cool compresses, topical corticosteroids, antihistamines, and emollients.
- Severe cases: Manage blistering or necrosis with wound care or referral to specialized burn/dermatology
- Patient education is key to preventing recurrence and avoiding unnecessary antimicrobial or antiparasitic therapy.

Prevention

- Avoid direct contact with citrus, celery, parsley, or other photosensitizing plants before UV-A exposure.
- Apply broad-spectrum sunscreen and wear protective clothing when outdoors.
- Educate travelers on hidden exposures (e.g., limebased drinks like mojitos or sangria).
- If exposure occurs, wash skin immediately with soap and water to remove photosensitizing compounds.

Case Presentation

Herein, we describe a case of a 26-year-old male who developed recurrent linear erythematous rashes on his right forearm during annual trips to Barbados, ultimately diagnosed as phytophotodermatitis secondary to lime exposure from mojitos held in his dominant hand.

Contact

Dr. Andrea K. Boggild Mail: andrea.Boggild@utoronto.ca

Figure. 1. Presenting rash on patient's hand

References

5. O'Brien BM. A practical approach to common skin problems in returning travellers. Travel Med Infect Dis. 2009;7(3):125-146. doi:10.1016/j.tmaid.2009.03.003

- 1. Grosu C, Jîjie AR, Manea HC, et al. New Insights Concerning Phytophotodermatitis Induced by Phototoxic Plants. Life. 2024;14(8). doi:10.3390/life14081019 2. Abugroun A, Gaznabi S, Natarajan A, Daoud H. Lime-induced phytophotodermatitis. Oxf Med Case Reports. 2019;2019(11):470-472. doi:10.1093/omcr/omz113
- 3. Derraik JGB, Rademaker M. Phytophotodermatitis caused by contact with a fig tree (Ficus carica). N Z Med J. 2007;120(1261):U2720 4. Mioduszewski M, Beecker J. Phytophotodermatitis from making sangria: a phototoxic reaction to lime and lemon juice. Can Med Assoc J. 2015;187(10):756-756. doi:10.1503/cmaj.140942
- 6. Hankinson A, Lloyd B, Alweis R. Lime-induced phytophotodermatitis. J Community Hosp Intern Med Perspect. 2014;4(4):25090. doi:10.3402/jchimp.v4.25090 7. Mansilla-Polo M, Martín-Torregrosa D, Abril-Pérez C, Botella-Estrada R. Phytophotodermatitis as a clinical problem and as a therapeutic option: Case report and review of the literature. Photodiagnosis Photodyn Ther. 2023;41.
- 8. Picard CL, Morice C, Moreau A, Dompmartin A, Stefan A, Verneuil L. Phytophotodermatitis in Children: A Difficult Diagnosis Mimicking other Dermatitis. Journal of Dermatology and Clinical Research. 2017;5(3):1101.

9. Carlsen K, Weismann K. Phytophotodermatitis in 19 children admitted to hospital and their differential diagnoses: Child abuse and herpes simplex virus infection. J Am Acad Dermatol. 2007;57(5):S88-S91. doi:10.1016/J.JAAD.2006.08.034

10. Harshman J, Quan Y, Hsiang D. Phytophotodermatitis: Rash with many faces. Canadian Family Physician. 2017;63(12):938-940. 11. Baker BG, Bedford J, Kanitkar S. Keeping pace with the media; Giant Hogweed burns — A case series and comprehensive review. Burns. 2017;43(5):933-938. doi:10.1016/j.burns.2016.10.018.